发布于 2015-05-26  1.68k 次阅读

Store data in flash (program) memory instead of SRAM. There's a description of the various types of memory available on an Arduino board.

The PROGMEM keyword is a variable modifier, it should be used only with the datatypes defined in pgmspace.h. It tells the compiler "put this information into flash memory", instead of into SRAM, where it would normally go. (It is similar to the "code" keyword in Keil for C51)

PROGMEM is part of the pgmspace.h library. So you first need to include the library at the top your sketch, like this:

#include <avr/pgmspace.h>


  • dataType - any variable type
  • variableName - the name for your array of data

Note that because PROGMEM is a variable modifier, there is no hard and fast rule about where it should go, so the Arduino compiler accepts all of the definitions below, which are also synonymous. However experiments have indicated that, in various versions of Arduino (having to do with GCC version), PROGMEM may work in one location and not in another. The "string table" example below has been tested to work with Arduino 13. Earlier versions of the IDE may work better if PROGMEM is included after the variable name.

While PROGMEM could be used on a single variable, it is really only worth the fuss if you have a larger block of data that needs to be stored, which is usually easiest in an array, (or another C data structure beyond our present discussion).

Using PROGMEM is also a two-step procedure. After getting the data into Flash memory, it requires special methods (functions), also defined in the pgmspace.h library, to read the data from program memory back into SRAM, so we can do something useful with it.


The following code fragments illustrate how to read and write chars (bytes) and ints (2 bytes) to PROGMEM.

Arrays of strings

It is often convenient when working with large amounts of text, such as a project with an LCD display, to setup an array of strings. Because strings themselves are arrays, this is in actually an example of a two-dimensional array.

These tend to be large structures so putting them into program memory is often desirable. The code below illustrates the idea.

See also

Reference Home

Corrections, suggestions, and new documentation should be posted to the Forum.

The text of the Arduino reference is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. Code samples in the reference are released into the public domain.